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A brief review is presented of a project carried out at the CWI during the years
1983-1987. These investigations were supported by the Netherlands Founda-
tion for the Technical Sciences (STW), future Technical Science Branch of the
Netherlands Organization for Scientific Research (NWO). The aim was to obtain
a better understanding of the chaotic properties of the atmosphere, which may
contribute to the development of long-range weather prediction models. It is
argued that a method for investigating this problem is to analyse highly
simplified atmospheric spectral models, since the results may provide clues on
how to analyse more complicated models as well as real data. It appears that
low-order models possess multiple equilibria, with the corresponding flow pat-
terns resembling large-scale preferent states of the atmospheric circulation.
Vacillatory behaviour, in which the system alternately visits different flow
regimes, is obtained either by adding stochastic perturbations to the equations
or by including a sufficient number of modes in the spectral expansions. The
predictability properties of these systems are discussed and particular attention
is given to the forcing terms which are added to the spectral equations in order
to account for the effect of the neglected modes and physical processes not
included in the model.

1. INTRODUCTION

During 1983-1987 research was done at the CWI in the STW project
‘Mathematical methods for the analysis of atmospheric spectral models’. The
aim of this study was to obtain a better understanding of the dynamics of the
atmospheric circulation in the midlatitudes (roughly between the 30 and 60
degree latitude), especially in relation to the problem of long-range weather
predictions. Modern weather forecasts are based on the results of detailed and
complicated numerical models, such as that of the European Centre for
Medium Range Weather Forecasting (ECMWF) in Reading, England. It has
long been assumed that the period over which the weather is predicted could
be increased forever if the numerical models would be further improved and
the initial state (determined by means of observations) better prescribed. How-
ever, nowadays it is known that there is a fundamental limit to the period over
which the weather can be predicted, i.e., it cannot be enlarged by carrying out
more and better observations. In most cases this predictability horizon of the
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atmosphere is encountered after a period of 5 to 14 days (OPSTEEGH [21]). As a
consequence, it is not possible to give forecasts for periods longer than about
two weeks. Unfortunately, there is precisely a strong need for accurate long-
range weather predictions. This is because on time scales between a week and
three months frequently climatic anomalies occur which have large social
consequences, for example excessive droughts, heat-waves, etc.

In order to understand why forecasts fail on the long term we first present
some qualitative arguments. The weather as we (in midlatitudes) experience it
is the result of day to day variations in the geographical distribution of high-
and low-pressure belts. These so-called synoptic-scale eddies have typical hor-
izontal dimensions of 1000 km, a life span of about a week and are embedded
in a belt of predominantly westerly winds. The latter result from an approxi-
mate balance between thermal forcing, due to the equator-pole temperature
gradient, and the Coriolis force (induced by the rotation of the earth) acting
on a moving fluid. Furthermore, due to the presence of a large-scale topogra-
phy (to which in particular the Himalaya, Rocky Mountains and the oceans
contribute) and thermal differences between land and ocean, ultra-long quasi-
stationary waves are generated which give the flow a meandering structure.
These planetary waves have much larger dimensions (about 10000 km) and
longer lives (of the order of several months) than the synoptic-scale eddies.
Thus, the atmospheric circulation is characterized by two distinct scales of
motion: a planetary scale and a synoptic scale. Little is known about the sub-
tle interplay between these scales of motion. It appears that synoptic-scale
eddies develop spontaneously as initially small perturbations of the locally
unstable planetary-scale circulation. Moreover, the planetary-scale flow tends
to steer and organize the eddies along preferent paths, which are the
stormtracks. On the other hand the eddies themselves influence the evolution
of the planetary waves. The consequences for the predictability of the atmos-
pheric circulation were systematically studied by Lorenz [18]. He demon-
strated that interactions between different scales of motion are the principal
cause for the limited predictability of the atmosphere.

As a result of the feedback between the planetary waves and the synoptic-
scale eddies quasi-stable flow configurations occur which cause short-range
climatic anomalies. The existence of such large-scale preferent states of the
atmospheric circulation (sometimes called weather regimes) has been known
for a long time. They can be divided into three major types: zonal (high-index)
states with strong western winds and small wave amplitudes, meridional (low-
index) states with large waves embedded in a weak zonal flow and transitional
states which have characteristics of both the high- and low-index states. Typi-
cal flow configurations of these regimes in the European region are shown in
Figure 1. The situation in Figure Ic is that of a persistent anticyclone near
Scandinavia which blocks the standard passage of depressions over Western
Europe, in this way causing persistent weather conditions in this region.
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FIGURE 1. Geographical distribution of the height (in geopotential de-
cameter) of the 500 mb level for the Wz (a), HM (b) and
HFa (c) winter Grosswetterlagen, which are of zonal,
mixed and meridional type, respectively. The isohyps are
approximate streamlines of the flow; arrows indicate flow
direction. From VAN DnK ET AL. [29].

Obviously, the atmosphere can be considered as a chaotic system which shows
vacillatory behaviour, i.e., it irregularly visits different preferent states. As dis-
cussed in DoLE [9] and REINHOLD [23], quasi-stable flow patterns suddenly
develop and disappear without any clear indication why. Furthermore, the life
span of the weather regimes is highly variable without having a preferent time
scale. Within the framework of long-term weather predictions it is important to
obtain a better understanding of the dynamics responsible for this vacillatory
behaviour. A method for studying this problem consists of analysing highly
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simplified models which represent qualitative features of the atmospheric circu-
lation. The motivation for doing this is that from the results indications may
be found how to consider more complicated models as well as real data. In
this way we hope to enhance our understanding in the atmospheric dynamics.
This method has been adapted in the STW project mentioned previously and a
review of the results will be presented in this paper.

2. QUASI-GEOSTROPHIC DYNAMICS

In order to study the variability of the atmospheric circulation we should start
from the full equations of motion. However, they are too complicated to deal
with analytically and therefore they are simplified by the application of scale
analysis, being a standard technique in geophysical fluid dynamics, see
PEDLOSKY [22]. The method requires an a priori specification of the type of
motion to be studied. Next it yields, by means of physical arguments, charac-
teristic scales for the flow with which the equations of motion are written in a
dimensionless form. The resulting system will contain several dimensionless
parameters. The aim of the method is to find small parameters. Then, by
means of standard perturbation techniques, simplified equations are derived
which describe the type of motion under consideration.

Here we consider a flow near some central latitude ¢=¢, on the Northern
Hemisphere distant from equator and pole. Let it have a horizontal (parallel to
the earth’s surface) length scale k!, a vertical length scale H (which is the
depth of the fluid) and a time scale 6™ ', such that

H<<k '<<rg, o<<fy=24 sin ¢y, (2.1)

where fj is the Coriolis parameter at ¢ =4y, { the angular speed of rotation of
the earth and r the radius of the earth. The first condition implies that the
flow is nearly horizontal and 2-dimensional. The latter means that to a first
approximation the momentum equations reduce to a balance between the
Coriolis force and pressure gradient force, which is the geostrophic balance.
Clearly, (2.1) is satisfied for large-scale atmospheric motions near ¢ =45° N
where k' ~10° m, H~10* m, ¢ '~10° s, f4,=10"% s ! and rg~6.410° m.
Under these conditions it is shown by PEDLOSKY [22] that the equations of
motion reduce to one nonlinear partial differential equation. With the addi-
tional assumption that the flow is barotropic (i.e., density is a function of pres-
sure only) the result reads (in a dimensionless form)

0

o VI V2¢)+yJ(¢.lz)+B%£+CV2(¢—\l/*) =0 (22

(N (2) (3 (4) (5

This is the barotropic vorticity equation. Here ¢ is time and y(x,y.t) a stream-
function to which all state variables (velocities, density, pressure and tempera-
ture) are related. At a fixed time the flow is along the streamlines ¢ = con-
stant. Furthermore
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dx = krocos¢od, dy = kryd,

where A is longitude and ¢ is latitude. In Eq. (2.2) term (1) represents the local
change of the relative vorticity 2y (which is the vertical component of the
curl of the velocity vector), (2) the advection of vorticity by the flow itself, (3)
the production of vorticity due to the presence of a large-scale topography
h(x,y) (in particular the high mountains and the oceans) with characteristic
amplitude Ay, (4) the planetary vorticity advection due to the variation of the
Coriolis parameter with latitude and (5) represents both a damping of vorticity
and an external vorticity forcing (modelling the equator-pole temperature gra-
dient) indicated by the function " (x,y). The dimensionless parameters are

_ foho _ & _ 28c0s ¢y C = f06E
oH’ ok okry 26H”
where 8¢ is the depth of the boundary layer near the earth’s surface in which
frictional effects are important. The flow described by Eq. (2.2) is called quasi-

geostrophic because the small departures from the geostrophic balance deter-
mine the evolution of the flow (PEDLOSKY [22]).

(2.4)

3. DERIVATION OF SPECTRAL MODELS BY GALERKIN PROJECTION TECHNIQUES
The barotropic vorticity equation (2.2) is still difficult to handle, mainly
because of its nonlinear structure. A way to obtain approximate solutions is to
apply Galerkin projection techniques where explicit use is made of the boun-
dary conditions to the equation (VOIGT ET AL. [30]). This spectral method
will be discussed for a specific example. Its application to models used for
numerical weather prediction is described by JARRAUD and BAEDE [15]. Con-
sider Eq. (2.2) in a rectangular channel of length L and width B=(bL/2). The
dimensionless length and width are 27 and 7b, respectively. We investigate the
existence of travelling wave solutions in the zonal x-direction. At the boun-
daries y =0 and y==b the meridional velocity component is assumed to be
zero and it follows that the mean zonal velocity component over these boun-
daries should be constant. Consequently, the boundary conditions read

Yx +2m, y, 1) = YWx,p,t), (3.1
2
o 0 and 3 (‘)[ B dx =0 aty=0,y=mnb.

Applying the spectral method, we expand the streamfunction y(x,y,f) in a
series of eigenfunctions {¢;}; of the Laplace operator V* with corresponding
eigenvalues A;, thus

llb(x’.y’t) = E‘P/(t)(i’/(xa)’), j:(jl’jZ)' (32)
J

Each mode y;¢, satisfies the boundary conditions and the eigenfunctions are
orthonormalized with respect to the domain average. In this case
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{¢;) = V2cos(j,p/b) (3.3a)
{$;} = \/Z-exp(1j|x)sin(/'2y/b) (3.3b)

2
A :j:;-+{)_22, lithj2 = L2 (3.30)

The functions (3.3a) describe (0,j,) zonal flow modes (because they are
independent of x) and the functions in (3.3b) describe (|/,|,j;) wave modes.
The topography and forcing streamfunction are represented by

h(x,y) = cos(x)sin(y/b), (3.4)
¥ (xy) = V2{g1c08(y/b)+iyc0s(2y/b)).

Projecting Eq. (2.2) on the eigenfunctions (3.3), which is called a Galerkin pro-
jection, we obtain the spectral model

Aj‘l’j = %; ECjInI(AI~An1)¢I¢n1 + Y; zcjlnﬁblhm +
+ ?bjl‘l’l_('}‘j(ﬂbj_‘l’;‘)’ (3.5)

consisting of an infinite number of coupled ordinary differential equations.
Here a dot denotes differentiation with respect to time,

0
Citm = <¢ja'l(¢l,¢m)>a bjl = B<¢j’—ét_l> (36)

are the interaction coefficients and <,> denotes an inner product on the
domain considered. It appears that nonlinear contributions always occur as
triads in which two modes interact and affect the evolution of a third mode.
Developing (3.6) using (3.3) we find that there are two types of nonlinear
triads: one involving a zonal flow mode and two wave modes and one involv-
ing three wave modes. The underlying physical mechanism is discussed in
PEDLOSKY [22].

4. THE TRUNCATION PROBLEM
In practice the expansion (3.2) is truncated after a finite number of eigenfunc-
tions. Only the large-scale modes are resolved since it is observed that most
energy of quasi-geostrophic flow is contained in the long waves. The result is a
dynamical system of the type

x = fu(x)+F(r) in RN (4.1

Here N is the truncation number, R the phase space, x =(x|,x3,...,xy) real-
valued velocity amplitudes of the modes (to be specified in the next sections)
and f,(x) an N-dimensional vector field depending on x and parameters
=ty M2,....ptn,). Finally, the F(r) represent the effect of the neglected modes
on the dynamics of the retained modes. We remark that if (4.1) is used as a
forecast model F(r) should also account for the effect of physical processes
and boundary conditions not (correctly) incorporated in the model. These
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forcing terms are unknowns by definition.

A convenient approach in theoretical studies concerning (4.1) is to neglect
the effect of the forcing terms a priori and consider the properties of spectral
models with increasing truncation numbers. The underlying motivation 1s that
they will at least represent properties of the original vorticity equation. Some
formal indications that this idea is correct have been found by CONSTANTIN ET
AL. [4]. They showed that for spectral models of the Navier-Stokes equations a
minimum number N; of eigenfunctions could be selected such that solutions of
truncated spectral models with N=N; and F(1)=0 have equal attractor pro-
perties as the solutions of the original system. Although it is not clear whether
these results are applicable to the barotropic vorticity equation, they at least
suggest that it is useful to consider truncated spectral models.

In principle we would like to investigate the properties of (4.1) for arbitrary
values of N. However, we remark that it is not possible to carry out such an
analysis systematically since the systems have a complicated dynamics due to
the large number of nonlinear terms in the equations. Therefore, as a first step,
it becomes worthwhile to study low-order spectral models, in which only a few
modes are retained, and investigate in what sense they reflect features like
transitions between weather regimes and a flow with a limited predictability.
An important advantage is that they can be analysed with techniques originat-
ing from the theory of dynamical systems, see GUCKENHEIMER and HOLMES
[14] and THOMPSON and STEWART [28], whereas from the results indications
may be found how to study more complicated models as well as real data.

The structure of the vector fields of the spectral models discussed in this
paper is such that nontransient solutions are found in bounded subsets of the
phase space. These can be either regular sets, including stationary points
(equilibrium flow patterns), limit cycles (oscillating flow) and invariant tori
(quasi-periodically oscillating flow), as well as irregular sets which are in fact
strange attractors (chaotic flow). These sets of limit points are determined
from a numerical bifurcation analysis of the spectral model, using adapted rou-
tines of the software package AUTO of DoEDEL [8].

A spectral model is assumed to give at least a qualitative description of the
atmospheric circulation if trajectories irregularly visit different preferent
regions in phase space. In this way the index cycle mentioned in the introduc-
tion is simulated. If this behaviour does not occur the truncation is apparently
too severe and more modes should be included in the spectral expansions.
Another possibility is to take account of the effect of the synoptic-scale tran-
sient eddies on the dynamics of planetary-specific scale flow by adding specific
forcing terms to the spectral equations. However, this requires a thorough
understanding of the interactions between different scales of motion, this being
one of the major problems in modern dynamic meteorology. We will return to
this point in the Sections 6 and 7.
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5. A THREE- AND SIX-COMPONENT MODEL

The fact that the Galerkin projection technique, discussed in Section 3, can be
applied to the partial differential equations describing the dynamics of large-
scale atmospheric flow was first realized by SILBERMAN [26]. Later on a
number of other spectral models have been developed, see the review in DE
SwaRrT [5]. It appears that already extremely low-order spectral models show
qualitative features of the circulation. The simplest example is the three-
component model of CHARNEY and DEVORE [2] in which only the (0,1) zonal
flow mode and the (1,1) wave mode are retained. This implies that we assume
Vg2 in (3.4) to be zero. The stationary points of this model can be computed
analytically. There are either one or three of them depending on the model
parameters. As a characteristic situation we will consider a channel of length
5000 km (= 2#/k) and width 4000 km centered at latitude ¢y=45° where
fo=10"% s " and By=1.6:10""" m™! s~!. The vertical length scale is taken
H=10" m, the time scale 6~ ' =10° s (about one day), the mountain amplitude
ho=10° m and the dissipation time scale about ten days. This yields the
parameter values b=1.6, =125, y=1 and ¢=0.1. In Figure 2 the x,-
component of the stationary points (where x, =yp1/b) is presented as a func-
tion of the external forcing x| =vq;/b=U/U,, where U is a velocity scale for
the forcing and Uy=0/k=78 ms !.
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FIGURE 2. The x;-component of the stationary points x of the three-
component model for the parameter values discussed in the
text. A solid line denotes that the solution is stable whereas
a dashed line refers to an unstable solution.

In Figure 3 the streamfunction patterns associated with the equilibria E |, E;
and E; occurring for x| =4 are shown. Note their strong resemblance to the
circulation patterns shown in Figure 1. Based on this agreement CHARNEY and
DEVORE [2] suggest that equilibria of spectral models indicate large-scale pre-
ferent states of the atmospheric circulation. The existence of multiple equilibria
is a consequence of the presence of topography, forcing and dissipation.
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However, no flow with a limited predictability and no vacillatory behaviour
(ie., an index cycle) is found: the nontransient solutions are always stationary.
The reason for this behaviour is a lack of nonlinear interactions in the model.

FIGURE 3. Nondimensional streamfunction patterns of the equilibria
E\ (a), E; (b) and E; (c) for the parameter values dis-
cussed in the text. The arrows indicate the flow direction
which is along the streamlines y=constant. Here a
difference Ay =1 corresponds to a zonal transport of
2.6:10" m? s~ !.The dashed lines represent contours of the

topography (10° m).

Therefore, we extend the model by including also the (0,2) zonal flow mode
and the (1,2) wave mode in the spectral expansions, resulting in a six-
component model. In Figure 4 the x - and x4( =yg2/b)-component of its sta-
tionary points are shown as a function of x| in case x3(=vg,/b)=0 and all
other parameter values similar as before. Clearly, equilibria of the three-
component model are also equilibria of the six-component model but stability
properties can be different because of the increased number of degrees of free-
dom. Furthermore, the model contains a new type of nonlinear interactions
involving a zonal flow component and two different wave modes. As a result
additional equilibria are found. However, the nontransient behaviour can be
more complicated. In DE SWART [5,6] it is shown that also stable periodic
orbits exist, indicated by the presence of Hopf bifurcation points in Figure 4,
as well as strange attractors. However, the latter have only a limited domain of
attraction in phase space and the chaotic solutions remain in the low-index
regime forever. Thus no simulation of an index cycle is obtained. This
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conclusion remains unchanged if x; is given nonzero values. It is due to the
presence of only one triad of nonlinear interactions in the model. Thus in
order to obtain vacillating solutions either forcing terms must be added to the
equations or more modes should be included in the spectral expansions. Both
possibilities will be subsequently considered.
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FIGURE 4. As Figure 2, but the x;-component (left) and x4-
component (right) of the six-component model. A triangle
denotes a Hopf bifurcation point.

6. EFFECT OF STOCHASTIC PERTURBATIONS ON LOW-ORDER SPECTRAL MODELS

A first attempt to model the effect of the unresolved modes on the three com-
ponent model was carried out by EGGER [10]. He added stochastic forcing
terms of Gaussian white noise with a fixed small intensity to the equations.
The noise forces the system to visit alternately the attraction domains of the
two stable equilibria, thus in this way an index cycle is simulated. A
justification for choosing this type of forcing was given by EGGER and ScCHIL-
LING [I1] who showed, using atmospheric data, that the forcing terms F(t) in
(4.1) can be modelled by coloured-noise processes. These are stationary and
Gaussian Markov processes and contain white noise as a limit for the correla-
tion time tending to zero. In DE SwART and GRASMAN [7] the effect of
coloured-noise forcing on the three-component-model of Section 5 having three
different stationary points is discussed. For simplicity we only consider the
effect of white-noise forcing. Then Eq. (4.1) become

dx = f(x)dt + edW inR>, (6.1)

where the three components of W(r) are mutually independent Wiener
processes and e is the noise intensity which is assumed to be small (e<<1).
Let the stable equilibria E, and E; have the attraction domains &; and ;
with boundaries 0Q; and 9%, respectively. We investigate the distribution of
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residence times 7(x) starting from a state x €§; (i =1,3) of the system in these
attraction domains. The expected value <t(x)>=T(x) gives a measure of the
persistence of a large-scale preferent state of the atmospheric circulation. In
GORDINER [13] it is shown that T'(x) obeys

FEVT)+f(xyVT(x) = ~1in ©, (6.2)
T=0at d%; (i =1 or 3).

An asymptotic solution of this elliptic differential equation, valid for low-
intensity noise (¢<<<{1), is derived in MATKOWSKY ET AL. [20] by application
of singular perturbation techniques. Outside a boundary layer near 9%; it
reads

T~CeX, K = lim Q(x). (6.3)

Here Q(x) is the solution of the eikonal equation
‘;II(VQ(X))Z t fux)VQO((x) =0, O(E) =0, (6.4)

which can be solved by means of the ray method, see LupwiG [19]. However,
the computed residence times are of the order of months whereas from obser-
vations we expect life spans of weather regimes in the order of two weeks. We
will discuss this indiscrepancy in Section 8. Furthermore, it is found that the
most probable region of exit from the attraction domains is an e-
neighbourhood of the unstable equilibrium E,. Here the system remains for a
characteristic time

Ty~ log(), (6.5)

where A is the largest positive real part of the deterministic system linearized at
E,.

Once the stochastic dynamical system is in its statistical equilibrium it is
characterized by the expected residence times in the different regimes. How-
ever, in this way no information is obtained about the time scale over which
the effect of initial conditions is important. This can be investigated with a
discrete-state Markov process model. For the randomly forced spectral models
discussed here we can derive such a model with three states: a zonal state (1),
a transitional state (2) and a meridional state (3). Let Q;; denote the transition
probability per unit of time from state i to j and let p;(r) denote the probabil-
ity for the system to be in state i at time 2. Then the p() satisfy

pr= —(Qu+ Qupr — Qups + 0y,
P3 = — Qupi — (@xn + Qu)ps + 0, (6.6)
p2 = 1=pi—ps,
where
Qu =@y = —— , Qi = L , On = L (6.7)
2T, T, T



in Figure 5 the probability functions p(r) are given for a process with
T,=9,T,=1 and T;=31 that starts in state 1. 2 and 3, respectively.

' T T T T 1

1 Fr F T 1 1 T T T

FIGURE 5. Evolution of the probability distribution of the Markov
process starting in state 1 (left), 2 (middle) and 3 (right)
respectively. The dotted lines represent the stationary dis-
tribution.

From these figures it is seen that once an initial state is given, the Markov
model contains more information about the system than the stationary proba-
bility distribution for a period of about fifty days.

7. TEN COMPONENTS: DETERMINISTIC CHAOS AND VACILLATION

As discussed in Section 5, a second possibility for simulating an index cycle
with spectral models of the quasi-geostrophic barotropic potential vorticity
equation is to include more modes in the spectral expansions. LEGRAS and
GHIL [16] have studied a 25-component model and found that solutions could
visit different preferent regions in phase space. In DE SWART [6] a method 1s
discussed to derive a ‘minimum-order’ spectral model which has, for fixed
parameter values, multiple unstable regular solutions and a strange attractor. It
is expected that trajectories starting from arbitrary initial conditions converge
to this attractor. After that they must vacillate between different preferent
regions in phase space which are close to the (weakly) unstable regular solu-
tions. It is claimed that, by using a rectangular truncation of the eigenfunction
expansions in wave number space, the minimum number of components is ten.
The model describes the evolution of two zonal flow profiles (a (0,1) and (0.2)
mode) and four waves (the (1,1), (1,2), (2,1) and (2,2) modes) in a barotropic
atmosphere. Compared to the six-component model of Section 5 it contains a
new type of nonlinear interaction involving three waves: the (1,1), (1.2) and
(2,1) modes. In Figure 6 the x,- and x4-component of the stationary points of
this model are shown for the same parameter values as discussed in Section 5.
Due to the presence of the wave triad, isolated branches of equilibria occur. By
letting x4 become nonzero all regular solutions may be turned unstable. For
x3 =—8 the model represents a flow vacillating between three preferent
regimes where the latter are actually unstable periodic solutions of the model,



see Figure 7. The wave triad provides for interaction between clearly distinct
scales of motion: a planetary scale and synoptic scale. This behaviour is simi-
lar to what is observed in the atmosphere.
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FIGURE 7a. The x-component of a chaotic solution of the ten-
component model as a function of time. Here
t'=(t —1000)/500 and the dimensional period is approxi-
mately six years.

b. Sketch of the unstable periodic orbits projected onto the
x3—x3 plane. The preferent regions of the strange attrac-
tor are small tubes around these orbits.

By computing the spectrum of Lyapunov exponents, using the method of
WoLF ET AL. [31] the existence of a global strange attractor is shown.
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Lyapunov exponents measure the average divergence between nearby orbits in
phase space whereas chaos is defined by at least one positive exponent. As dis-
cussed in FARMER ET AL. [12] from the spectrum of Lyapunov exponents we
can estimate the fractal dimension of the attractor which also yields an upper
bound to the number of degrees of freedom of the chaotic flow.

In practice initial conditions are never known with infinite precision. Thus
small errors are introduced in the system which will grow during its evolution
because of the chaotic dynamics. Consequently, the predictability of the flow is
limited: a time scale of average prediction is given by the reciprocal of the sum
of all positive Lyapunov exponents (SCHUSTER [25]). However, of more interest
to meteorologists is the dependence of predictability on the state of the system
(TENNEKES ET AL. [27]). In DE SWART [6] it is argued that the local eigen-
values at each point of an orbit may determine the time evolution of small
errors on this orbit. In that case the eigenvectors corresponding to the eigen-
values with positive real part determine the geographical distribution of the
error growth. However, this is on the condition that the time scale of error
growth is small compared to the time scale on which the flow itself evolves.
This method can be applied to spectral models showing long periods of quasi-
stationary behaviour.

The impact of neglected short-scale modes on a planetary-scale model was
studied by considering the chaotic ten-component model to represent the real
atmosphere and the six-component model of Section 5 (for identical parameter
values) to be a forecast model. For obtaining equivalence between solutions of
the two systems forcing terms must be added to the equations of the forecast
model. It appears that these forcing terms have an unpredictable nature and
that they cannot be modelled by the simple stochastic processes used in Sec-
tion 6. We will discuss these results in the next section.

8. CONCLUDING REMARKS

In this final section we briefly discuss the relevance of our investigations to a
better understanding of the atmospheric circulation. It was remarked in the
introduction that an accurate modelling of the feedback between quasi-
stationary planetary-scale motion and transient synoptic-scale eddies is impor-
tant for the development of long-range weather forecast models. Here we have
argued that this problem may be studied by considering simplified models
which still represent the chaotic properties and vacillatory behaviour of the
atmosphere. Next we investigated whether they provide clues on how to
analyse more complicated models as well as real data.

As discussed in Section 5, already extremely low-order spectral models show
qualitative features of the atmospheric circulation. They possess multiple
equilibria for a range of parameter values and the corresponding flow patterns
resemble large-scale preferent states of the atmospheric circulation. However,
we remark that the existence of weather regimes has never been convincingly
demonstrated by a systematic data analysis; only recently some indications
have been found (BENzI ET AL. [l]).

It has been found that the three- and six-component models cannot simulate
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a flow vacillating between different weather regimes. In order to meet this
imperfection, in Section 6 stochastic forcing terms were added to the spectral
equations. They are assumed to account for the effect of neglected modes and
physical processes not incorporated in the model. A justification for choosing
white noise and coloured noise parametrizations is found from the data study
of EGGER and SCHILLING [11]. The noise forces the system to visit alternately
attraction domains of the stable equilibria. During a transition the system
remains a characteristic time near an unstable equilibrium. This suggests that
stable and unstable regular solutions of a spectral model may have some
relevance for the dynamics of the atmospheric circulation. A method was dis-
cussed for computing expected residence times near the equilibria of the
unperturbed system. Comparing the results with observational data it appears
that the computed life spans of the weather regimes are a factor of 10 larger
than those in the atmosphere.

A systematic way for investigating the effect of neglected modes on a trun-
cated spectral model has been discussed in Section 7. Here a ten-component
model is considered which is a ‘minimum-order’ model representing a finitely
predictable flow having two distinct scales of motion (a planetary and synoptic
scale) and vacillating between different preferent regimes. We assumed this
model to represent the real atmosphere and considered a six-component sub-
system as a forecast model. To the subsystem forcing terms were added such
that its solutions are equivalent to those of the full model projected onto the
modes which also belong to the subsystem. It was found that these forcing
terms have an unpredictable nature and that they cannot be modelled by
coloured-noise processes. This result is in agreement with that of LINDENBERG
and WEsT [17], who analysed explicit expressions for the forcing terms
representing the effect of the neglected modes on truncated spectral models of
the barotropic vorticity equation. It does not contradict the result of EGGER
and SCHILLING [11] since the latter authors also include the effect of neglected
physical processes in their definition of the forcing terms.

We remark that effects of topography are over-estimated in barotropic
models since they act directly on the entire fluid column. Baroclinic multi-level
models of the quasi-geostrophic potential vorticity equation give better results
at this point. Again multiple equilibria are found (CHARNEY and STRAUS [3])
and due to the presence of baroclinic instability mechanisms vacillatory
behaviour is even more easily produced. The two-level twenty-component
model of REINHOLD and PIERREHUMBERT [24] is probably the simplest model
containing all basic physical mechanisms: topographic, barotropic and baroc-
linic instability as well as the occurrence of wave triad interactions.

The problems with low-order spectral models in general is that unrealisti-
cally large external forcing values (corresponding to an equator-pole tempera-
ture difference of more than 150° C) are required in order to produce vacilla-
tory behaviour. Moreover, the characteristic lives of the regimes in the models
are much larger than those obtained from atmospheric data. These imperfec-
tions are probably due to the severe truncation in both the horizontal and vert-
ical direction. A better description of the atmospheric circulation is expected
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from multi-level high resolution models. Since their structure is extremely com-
plicated they are difficult to analyse. Alternatively, we can study lower-
dimensional spectral models which include an appropriate parametrization of
the synoptic forcing terms. This problem remains to be investigated in more
detail.
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